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KEY POINTS

� Overhead throwing motions are accomplished through activation of the kinetic chain,
which produces the normal mechanics.

� It is imperative to be able to identify normal mechanics in order to recognize abnormal
mechanics which are known to contribute to injury.

� Since the body works and fails a unit, it should be comprehensively evaluated in order to
detect deficits and/or impairments either proximally or distally to the site of symptoms,
which then can be restored to allow normal kinetic chain function.
INTRODUCTION

The overhead throwing or serving motion is a complex dynamic activity involving the
entire body. It results in the performance of a task that requires repetitive high velocity,
high load, and a large range of motion activities with a high degree of precision. It is
necessary to have knowledge about the normal mechanics of this motion to under-
stand optimum function of this motion in creating performance, and it is necessary
to have knowledge of the altered mechanics or pathomechanics, that exist and
contribute to the dysfunction of this motion, creating poor performance and injury.
This article illustrates current knowledge regarding the mechanics of the overhead

motion in normal function and discusses the known pathomechanics and how they
seem to relate to altered performance, injury, and injury risk. This knowledge has
implications for clinical evaluation, treatment guidelines, and rehabilitation protocols.
MECHANICS OF THE OVERHEAD MOTION: WHAT MAKES THE BALL GO

The overhead throwing motion is developed and regulated through a sequentially co-
ordinated and task-specific kinetic chain of force development and a sequentially acti-
vated kinematic chain of body positions and motions.1 The kinematics of both the
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baseball throw and tennis serve have been well described and may be broken down
into phases.2–4 These descriptions show how muscles can move the individual seg-
ments and show the temporal sequence of the motions. The kinetics are not as well
described but are important due to the forces and motions that are developed. These
forces and motions are applied to all the body segments to allow their summation,
regulation, and transfer throughout the segments, resulting in performance of the
task of throwing or hitting the ball. The term, kinetic chain, is used to collectively
describe both of these mechanical linkages. Using these definitions and terminology
allows a unifying concept to understand the overall mechanics.
An effective athletic kinetic chain is characterized by 3 components4: (1) optimized

anatomy in all segments; (2) optimized physiology (muscle flexibility and strength and
well-developed, efficient, task-specific motor patterns for muscle activation); and (3)
optimized mechanics (sequential generation of forces appropriately distributed across
motions that result in the desired athletic function).
The kinetic chain has several functions: (1) using integrated programs of muscle

activation to temporarily link multiple body segments into one functional segment
(eg, the back leg in cocking stance and push-off and the arm in long axis rotation prior
to ball release or ball impact) to decrease the degrees of freedom (DOFs) in the entire
motion2,5,6; (2) providing a stable proximal base for distal arm mobility; (3) maximizing
force development in the large muscles of the core and transferring it to the hand2,7,8;
(4) producing interactive moments at distal joints that develop more force and energy
than the joint itself could develop and decrease the magnitude of the applied loads at
the distal joint9–14; and (5) producing torques that decrease deceleration forces.12–16

Several studies have clearly established the basic roles of the kinetic chain, both in
baseball and tennis.7,9–11,14,17–21 Each body part has specific roles in the entire mo-
tion.2 The feet are contact points with the ground and allow maximum ground reaction
force for proximal stability and force generation. The legs and core are the mass for the
stable base and the engine for the largest amount of force generation. The shoulder is
the funnel for force regulation and transmission and the fulcrum for stability during the
rapid motion of the arm. The arm and hand is the rapidly moving delivery mechanism
of the force to the ball or racquet.
To achieve its role in kinetic chain function, the shoulder must develop precise ball-

and-socket kinematics to create maximum concavity-compression22 that optimizes
functional stability throughout the entire range of rapid motion. Requirements for func-
tional stability include optimum alignment of the humerus and glenoid within �30�

angulation,16 co-contraction and compression force couples of the rotator cuff and
shoulder muscles,23,24 a stable scapular base,25 adequate balanced rotational range
of motion,26–28 and labral integrity to act as a washer, allowing best fit of the humerus
into the glenoid.29

Tasks performed in baseball and tennis occur as a result of the summation of speed
principle, which states that in order to maximize the speed at the distal end of a linked
system, the movement should start with the proximal segments (the hips and core)
and progress to the distal segments (shoulder, elbow, and wrist).12 Each segment in
this linked system can influence motions of its adjacent segments. For example, dur-
ing a baseball pitch, stability of the back and stride legs allow rotation of the trunk,
which, in turn, allows for maximal throwing arm external rotation. The stable lower
extremity serves as a platform for trunk and upper extremity motion, where the amount
of trunk rotation is proportionate to the amount of arm motion, which can occur. Var-
iations in motor control and physical fitness components, such as strength, flexibility,
and muscle endurance, can affect the efficiency and effectiveness of all segments of
the linked system.5,6,30
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Efficient mechanics can be improved by decreasing the possible DOFs throughout
the entire motion.5,6,31,32 There are 244 possible DOFs in the body from the foot to the
hand.5 Most models of maximum efficiency in body motions find that limiting DOFs to
approximately 6 to 8 maximizes the total force output and minimizes effort and load.32

DOFs can be limited by coordinated muscle activation coupling, called integrative
complexes, that constrain and couple positions and motions so that several segments
move as one.31 Examples include the back leg stance position in baseball cocking,
where the body is stabilized over the planted leg,2 and the long axis rotation motion
in baseball or tennis, where shoulder internal rotation, a minimally moving elbow,
and forearm pronation allow the hand to rotate around the long axis from shoulder
to wrist.20

The few independent DOFs are called nodes and represent key positions and mo-
tions in the overhead tasks.2 These key positions are correlated with optimum force
development andminimal applied loads and are considered themost efficient methods
of coordinating kinetic chain activation. There may be multiple individual variations in
other parts of the kinetic chain, but these are the most basic and the ones required to
be present in all motions. The baseball pitching motion can be evaluated by analyzing
a set of 8 progressive positions and motions (Fig. 1, Table 1).18 These include trunk
control over the back leg, hand in pronation “on top of the ball” in cocking, front leg
directly toward home plate, control of lumbar lordosis in acceleration, hips facing
home plate, arm cocking–scapular retraction/arm horizontal abduction/shoulder
external rotation to maintain cocked arm in the scapular plane, “high” elbow above
shoulder, and long axis rotation—coupled shoulder internal rotation/forearm prona-
tion—at ball release.2,9–11,14,17,33 The tennis serve motion can be evaluated by
analyzing a set of 8 nodes or positions and motions that are correlated with optimum
biomechanics (Fig. 2, Table 2).2 These include optimum foot placement, adequate
knee flexion in cocking progressing to knee extension at ball impact, hip/trunk
counter-rotation away from the court in cocking, back hip tilt downwards in cocking,
hip/trunk rotation with a separation at approximately 30�, coupled scapular retrac-
tion/arm rotation to achieve cocking in the scapular plane, back leg to front leg motion
to create a shoulder-over-shouldermotion at ball impact, and long axis rotation into ball
impact and follow-through.2–4 These nodes can be evaluated by visual observation or
by video recording and analysis. An example of tennis-specific pathomechanics is illus-
trated in Fig. 3, with detailed descriptions of the deleterious motions listed in Table 2.
Fig. 1. The phases of throwing. The proper nodes are illustrated throughout the sequence.
They include back hip and leg loading, hand on top of the ball, controlled lumbar lordosis,
lead foot toward home plate, both hips facing home plate, and long axis rotation.
Abbrevations: Max ER, maximal external rotation; Max IR, maximal internal rotation.
(From Fleisig GS, Escamilla RF, Andrews JR, et al. Kinematic and kinetic comparison between
pitching and football passing. Journal of Applied Biomechanics 1996;12:207–24; with
permission.)
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Table 1
Baseball nodes and possible consequences

Node Normal Mechanics Pathomechanics Result To be Evaluated

1 Foot position Directly toward home plate Open or closed Increased load on trunk or
shoulder

Hip and/or trunk flexibility and
strength

2 Knee motion Stand tall Increased knee flexion Decreased force to arm Hip and knee strength

3 Hip motion Facing home plate Rotation away from home
plate

Increased load on shoulder and
elbow

Hip and trunk strength

4 Trunk motion Controlled lordosis Hyperlordosis and back
extension

Increased load on abdominals
and “slow arm”

Hip and trunk strength

5 Scapular position Retraction Scapular dyskinesis Increased internal and external
impingement with increased
load on rotator cuff muscles

Scapular strength and mobility

6 Shoulder/scapular
motion

Scapulohumeral rhythm with
arm motion (scapular
retraction/humeral
horizontal abduction/
humeral external rotation)

Hyper angulation of humerus
in relation to glenoid

Increase load on anterior
shoulder with potential
internal impingement

Scapular and shoulder
flexibility and strength

7 Elbow position High elbow (above 90�

abduction)
Dropped elbow (below 90�

abduction)
Increased valgus load on elbow Scapular position and strength,

trunk and hip flexibility and
strength

8 Hand position On top of ball Under or on side of ball Increased valgus load on elbow Shoulder and elbow position
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Fig. 2. Proper tennis serve nodes for optimal performance. The number sequence correlates
with the normal description in Table 2. There is proper foot position and loading, adequate
knee bend, back hip counter-rotation and tilt away from the court, X-angle of approxi-
mately 30�, trunk rotation, and arm cocking in line with the scapula. (Adapted from
Lintner D, Noonan TJ, Kibler WB. Injury patterns and biomechanics of the athlete’s shoulder.
Clin Sports Med 2008;27(4):527–52.)
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Adequate performance of the kinetic chain requires optimum anatomy and physi-
ology. Optimum anatomy must be present in all of the joints in the kinetic chain. Joint
injury (such as sprained ankles, unresolved knee injury or stiffness, hip tightness, and
back injury) can have deleterious effects for core stability, force production, interactive
moment production, and arm position.4,30 Optimum physiology requires adequate
muscle strength, flexibility, and endurance throughout the kinetic chain. It also re-
quires proper muscle activation patterns for core stability, force development,
integrative complexes, joint stabilization, and segment deceleration.4 The optimized
anatomy can then be acted on by the optimized physiology to create task-specific me-
chanics to achieve the kinematics and kinetics that produce the desired result of
optimal performance in throwing or hitting the ball, creating the lowest possible risk
of injury.

PATHOMECHANICS IN THE OVERHEAD MOTION: WHAT HAPPENS WHEN THE BALL
DOES NOT GO

Overhead athletes with a painful shoulder have been shown to have a multitude of
possible causative factors contributing to the presenting complaints of pain and
decreased function, either by causing the anatomic injury or increasing the dysfunc-
tion from the injury. They may be alterations in anatomy, physiology, and/or
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Table 2
Tennis nodes and possible consequences

Node Normal Mechanics Pathomechanics Result To be Evaluated

1 Foot position In line, foot back Foot forward Increased load on trunk or
shoulder

Hip and/or trunk flexibility and
strength

2 Knee motion Knee flexion greater than 15� Decreased knee flexion less
than 15�

Increased load on anterior
shoulder and medial elbow

Hip and knee strength

3 Hip motion Counter-rotation with posterior
hip tilt

No hip rotation or tilt Increased load on shoulder and
trunk; inability to push
through increasing load on
abdominals

Hip and trunk flexion flexibility
and strength

4 Trunk motion Controlled lordosis; X-anglew30� Hyperlordosis and back
extension; X-angle <30�

(hypo), X-angle >30�

(hyper)

Increased load on abdominals
and “slow arm”;

Increase load on anterior
shoulder

Hip, trunk, and shoulder
flexibility

5 Scapular position Retraction Scapular dyskinesis Increased internal and external
impingement with increased
load on rotator cuff muscles

Scapular strength and mobility

6 Shoulder/scapular
motion

Scapulohumeral rhythm with arm
motion (scapular retraction/
humeral horizontal abduction/
humeral external rotation)

Hyperangulation of humerus
in relation to glenoid

Increase load on anterior
shoulder with potential
internal impingement

Scapular and shoulder strength
and flexibility

7 Shoulder over
shoulder

Back shoulder moving up and
through the ball at impact,
then down into follow-through

Back shoulder staying level Increased load on abdominals Front hip strength and
flexibility, back hip weakness

8 Long axis rotation Shoulder internal rotation/
forearm pronation

Decreased shoulder internal
rotation

Increased load on medial
elbow

Glenohumeral rotation

X-angle, measurement of hip/trunk separation angle, the angle between a horizontal line between anterior aspect of both acromions and horizontal line between
both anterior superior iliac spines when viewed from above, first described by McLean and Andrisani.62

Note: Numbers 1–6 occur prior to the acceleration phase of the service motion whereas numbers 7 and 8 occur after ball impact.
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Fig. 3. Improper tennis serve nodes suggested to negatively affect function. The number
sequence correlates with the pathomechanics description in Table 2. There is minimal foot
loading, minimal knee flexion, ho hip rotation or tilting, no trunk rotation, and X-angle
of 0�. (Adapted from Lintner D, Noonan TJ, Kibler WB. Injury patterns and biomechanics
of the athlete’s shoulder. Clin Sports Med 2008;27(4):527–52.)
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biomechanics. They can combine to produce an alteration in the normal mechanics,
resulting in pathomechanics that may create decreased efficiency in the kinetic
chains, impaired performance, increased injury risk, or actual injury.12,21,34 These
pathomechanics contribute to the disabled throwing shoulder (DTS),35 a general
term that describes the limitations of function that exist in symptomatic overhead ath-
letes—from baseball players to tennis players—in that they cannot optimally perform
the task of throwing or hitting the ball. In a large percentage of cases, DTS is the result
of a cascade to injury,35 a process in which the body’s response to the inherent de-
mands of throwing or hitting results in a series of alterations throughout the kinetic
chain that can affect the optimal function of all segments in the chain. The most com-
mon sites of pathomechanics include the legs and core, scapula, and shoulder. In a
closed system, such as the kinetic chain, alteration in one area creates changes
throughout the entire system.29 This is known as the catch-up phenomenon, where
the changes in the interactive moments alter the forces in the distal segments.12,36

The increased forces place extra stress on the distal segments, which often result
in the sensation of pain or actual anatomic injury.

Legs/Core

The legs and core connect the body to the ground, producing the ground reaction
force that is important for force development, create the proximal base of stability
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required for distal mobility, and generate more than 50% of the kinetic energy and
force delivered to the hand.7,36 Alterations creating pathomechanics in this area are
seen in up to 50% of DTS patients.1 Alterations can be seen in foot position, knee
motion, hip motion/strength, and core stability.
Altered foot position can be a factor in both baseball and tennis. Lead foot place-

ment in baseball should be directed straight toward home plate.18 Deviations that
close the body (stride toward third base for a right-handed pitcher) cause a pitcher
to throw across the body, affecting performance (ball/strike ratio) and increasing loads
on the hip and oblique muscles. Deviations that open up the body (stride toward first
base for a right-handed pitcher) cause a pitcher to throw outside the target area and
place increased load on the abdominal muscles, anterior shoulder, and medial elbow.
In tennis, positioning of the back foot in a foot forward position alters the ability of the
body to rotate into cocking, placing increased stress on the trunk and shoulder (Fig. 4).
A commonly altered foot position is a compensation for weakness in hip and in trunk
flexibility and strength (see Table 2).
Alteration of knee flexion has also been associated with increased stresses in the

arm. Tennis players who did not have adequate bend in the knees, breaking the kinetic
chain and decreasing the contribution by the hip and trunk, had 23% to 27%
increased loads in horizontal adduction and rotation at the shoulder and valgus load
at the elbow.21 Quadriceps inflexibility and decreased eccentric strength may alter
knee motion.
Weakness or tightness at the hip can also affect other segments. Decreased hip

flexibility in rotation or strength in abduction (positive Trendelenburg) was seen in
49% of athletes with arthroscopically proved posterior superior–labral tears.37 Vad
and colleagues38 reported a 33% increase of low back pain in professional golfers
with tight hip muscles. Altered hip and trunk motion was found to increase shoulder
loads.39 The musculoskeletal alterations could potentially be due to tissue maladapta-
tions from repetitively imposed loads.40 Strength imbalances around the hip and lum-
bar spine have been demonstrated by many studies, suggesting that these deficits
may play a role in the dysfunction of the kinetic chain.41,42
Fig. 4. Example of the foot forward position.
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Scapula

Scapular dyskinesis is also seen in virtually every athlete with DTS. Dyskinesis repre-
sents an alteration of static scapular position or dynamic scapular motion in coordina-
tion with arm motion. The altered position and motions create a loss of control of
retraction and posterior tilt, resulting in protraction, anterior tilt, and excessive internal
rotation. Functional problems include external impingement due to anterior tilt,43–45 in-
ternal impingement due to internal rotation and glenoid antetilting,46 decreased rotator
cuff strength,47,48 and increased anterior capsular strain.49 Dyskinesis is associated
with 67% to 100% of shoulder injuries.50

Shoulder

Alterations in glenohumeral rotation are consistently found in overhead athletes with
DTS and are the factors most highly associated with shoulder pain and injury.1,34,51

They create multiple problems in and around the throwing shoulder, including scapular
dyskinesis due to a wind-up of the tight posterior structures,25 external impingement
due to anterior superior humeral head translation in follow-through,26,52 and posterior
superior humeral head translation in cocking and anterior superior translation in
flexion, which increase labral shear.27,35 Increased evidence suggests that both gleno-
humeral internal rotation deficit (GIRD) and total range-of-motion deficit (TROMD)
create the pathomechanics.34,51
Fig. 5. Illustration of the kinetic chain and the areas of clinical evaluation, as described in
Table 3.
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Table 3
Proximal to distal kinetic chain evaluation

Examination Emphasis Normal Abnormal Result Evaluation

One leg stability: stance Negative Trendelenburg Positive Trendelenburg Decrease force to shoulder Gluteus medius strength

One leg stability: squat Control of knee varus/valgus
during decent

Knee valgus or corkscrewing
during decent

Alters arm position during task Dynamic postural control

Hip rotation Bilateral symmetry within
known normal limits

Side-to-side asymmetry and/or
not within normal limits

Decrease trunk flexibility and
rotation

Internal and external rotation
of hip

Plank Ability to maintain body
position for at least 30 s

Inability to maintain body
position

Decreased core stability and
strength

Dynamic postural control in
suspended horizontal
position

Scapular dyskinesis Bilateral symmetry with no
inferior angle or medial
border prominence

Side-to-side asymmetry or
bilateral prominence of
inferior angle and/or medial
border

Decreased rotator cuff
function and increased risk
of internal and/or external
impingement

Scapular muscle control of
scapular position (“yes/no”
clinical evaluation,63,64

manual corrective
maneuvers25,47)

Shoulder rotation Side-to-side symmetry or
internal and external
rotation values less than
15� or less than 5�

Side-to-side asymmetry of 15�

or more in internal and/or
external rotation or 5� or
more of total range of
motion

Altered kinematics and
increased load on the
glenoid labrum

Internal and external rotation
of glenohumeral joint

Shoulder muscle
flexibility

Normal mobility of pectoralis
minor and latissimus dorsi

Tight pectoralis minor and/or
latissimus dorsi

Scapular protraction Palpation of pectoralis minor
and latissimus dorsi

Shoulder strength Normal resistance to testing
in anterior and posterior
muscles

Weakness and/or imbalance of
anterior and posterior
muscles

Scapular protraction,
decreased arm elevation,
strength, and concavity-
compression

Muscle strength from a
stabilized scapula

Joint internal
derangement

All provocative and stress
testing negative

Pop, click, slide, pain, stiffness,
possible “dead arm”

Loss of concavity-compression
and functional stability

Labral injury, rotator cuff
injury or weakness,
glenohumeral instability,
biceps tendinopathy
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Also, multiple muscles around the shoulder have been found to develop tightness as
a result of throwing. The most commonly affected muscles are the pectoralis minor,
subscapularis, and latissimus dorsi. The pathophysiology is believed to result from
chronic tensile overload and resulting scar or from a muscle adaptive response.53

The tight pectoralis minor creates a tendency for scapular anterior tilt and acromial
downward tilt, decreasing the arm’s ability to cock or reach maximal abduction.43,54,55

The tight subscapularis decreases arm external rotation, limiting arm cocking. The
tight latissimus dorsi limits overhead positioning and cocking.
The ultimate pathomechanical factor in the DTS is loss of optimal concavity-

compression and functional glenohumeral stability. This can result from a combination
of malalignment of the humerus on the glenoid,56 alteration of muscle force couples,
scapulardyskinesis,49,57GIRD/TROMD,26,27 rotatorcuff disease,1 and/or labral injury.1,58

This results in the performance symptoms of loss of velocity and accuracy and the “dead
arm”37 and in the clinical symptoms of pain, clicking, sliding, weakness, and injury.

CLINICAL IMPLICATIONS

The body works as a unit to achieve optimum overhead throwing function and can fail
as a unit in altered performance or the DTS. Therefore, the evaluation of overhead ath-
letes with DTS needs to be comprehensive and can involve evaluation of the pertinent
normal mechanics, evaluation of possible pathomechanics, identification of physio-
logic and biomechanical factors contributing to the pathomechanics, and the kinetic
chain examination as well as identification of all pathoanatomic factors that may exist
in the shoulder. Similarly, treatment should include optimization of the pathoanatomy
as well as restoration of the pathophysiology and pathomechanics.1

Evaluation of mechanics and pathomechanics can be clinically accomplished by
direct observation and/or video analysis of the motion. Specific methods for evalua-
tion and criteria for determining presence (yes) or absence (no) of the nodes have
been developed for baseball18 and tennis2,3 and are summarized in Tables 1 and 2.
This examination can identify anatomic areas and mechanical motions that may be
contributing to the symptoms and suggest areas for more detailed evaluation.
The kinetic chain examination should include a screening evaluation of leg and core

stability, observational evaluation for scapular dyskinesis, and evaluation of various
elements in the shoulder. It should be supplemented by a detailed examination of
the areas highlighted by the symptoms or evaluation30 (Fig. 5, Table 3).

The shoulder examination should be comprehensive, emphasizing evaluation of the
anatomy (labrum, biceps, and/or rotator cuff internal derangement), physiology (mus-
cle weakness/imbalance and flexibility), and mechanics (scapular dyskinesis, GIRD,
and TROMD).
Treatment should also involve a comprehensive approach, including restoration of

all kinetic chain deficits, altered mechanics, and functional joint stability. Rehabilitation
should address all the physiologic and mechanical factors.1,59–61 These include resto-
ration of hip range of motion and leg strength, core stability and strength, scapular
control, shoulder muscle flexibility and strength, and glenohumeral rotation. Surgery
should address repairing joint structures to optimize the capability for functional
stability.1

SUMMARY

Optimal performance of the overhead throwing task requires precise mechanics that
involve coordinated kinetic and kinematic chains to develop, transfer, and regulate the
forces the body needs to withstand the inherent demands of the task and to allow
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optimal performance. These chains have been evaluated and the basic components,
called nodes, have been identified.
Impaired performance and/or injury, the DTS, is associated with alterations in the

mechanics that are called pathomechanics. They can occur at multiple locations
throughout the kinetic chain. They must be evaluated and treated as part of the overall
problem.
Observational analysis of the mechanics and pathomechanics using the node anal-

ysis method can be useful in highlighting areas of alteration that can be evaluated for
anatomic injury or altered physiology. The comprehensive kinetic chain examination
can evaluate sites of kinetic chain breakage, and a detailed shoulder examination
can assess joint internal derangement of altered physiology that may contribute to
the pathomechanics.
Treatment of the DTS should be comprehensive, directed toward restoring physi-

ology and mechanics and optimizing anatomy. This maximizes the body’s ability to
develop normal mechanics to accomplish the overhead throwing task.
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